

NTP 192: Genotóxicos: control biológico

Genotoxiques: contrôle biologique Genotoxics: biological monotoring

Vigencia	gencia Actualizada por NTP Observaciones		aciones			
Válida						
ANÁLISIS						
Criterios legales		Criterios técnicos				
Derogados:	Vigentes:	Desfasados:	Operativos: Sí			

Redactor:

Alicia Huici Montagud Licenciada en Ciencias Biológicas

CENTRO NACIONAL DE CONDICIONES DE TRABAJO

Objetivo

Establecer el interés, posibilidades y significado que suponen una serie de métodos en control biológico de trabajadores expuestos a sustancias genotóxicas. Considerar la conveniencia de su uso en estudios que proporcionen cualquier tipo de información que pueda suponer una mejora en la prevención y el control de exposiciones genotóxicas.

Introducción

Las especiales características que presentan las exposiciones a sustancias cancerígenas hace que su tratamiento sea a la vez complejo y urgente. (Ver NTP-159).

El consumo de sustancias químicas en los países industrializados se dobla cada siete años, utilizándose cotidianamente unas 70.000 sustancias diferentes. Un estudio concienzudo, incluyendo la experimentación animal, del potencial cancerígeno de cada una de ellas resulta inviable. Por ello proliferan los "ensayos a corto plazo", indicadores de la mutagenicidad de una sustancia, es decir, de su capacidad para alterar el material genético. La determinación de la mutagenicidad de una sustancia concreta permite evaluar indirectamente su carcinogenicidad, puesto que entre ambas propiedades existe, en la mayoría de los casos, una relación directa. Suponiendo que a todas las sustancias comúnmente utilizadas se les aplicara alguno de los múltiples métodos desarrollados para este tipo de ensayos, la extrapolación de los resultados obtenidos a normas de calidad ambiental para los humanos expuestos, laboral o extralaboralmente, sigue siendo un problema, especialmente si se tiene en cuenta que las exposiciones humanas son variables y poco concretas. Además, la variabilidad de la respuesta individual es máxima en el caso del cáncer puesto que en su desarrollo intervienen factores endógenos y exágenos en proporciones actualmente incuantificables.

En cualquier caso, parece improbable que la población mundial pueda llegar a estar totalmente exenta de exposiciones a sustancias que afecten a su material genético, aun mejorando las técnicas de clasificación de nuevas sustancias según su grado de genotoxicidad. Interesa, por tanto, especialmente en la población laboral, la detección de aquellos trabajadores que presenten una notable absorción de productos genotóxicos. Para ello se están estudiando y desarrollando varios tipos de métodos que sean capaces de revelar la absorción de sustancias susceptibles de desencadenar un proceso tumoral en distintas fases del mismo. Existen grandes diferencias entre los estados de desarrollo de dichos métodos, así como entre sus grados de validez en cuanto a indicadores de determinada exposición e indicadores de riesgo para la salud. A continuación se revisa una serie de posibilidades para el control biológico de exposiciones a sustancias genotóxicas (zona de color suave de la Fig. 1), agrupándolas según su significado biológico, es decir, según el tipo de información que revelan.

En la mayoría de los casos se trata de técnicas prometedoras, de gran importancia para la investigación epidemiológica y básica, pero sin aplicación práctica en la estimación del riesgo genotóxico de un determinado puesto de trabajo.

SIGNIFICADO DE LOS INDICADORES	METODO DE EVALUACION			
DOSIS INTERNA	Determinación de la sustancia o sus metabolitos en muestras biológicas Mutagenicidad en la orina Tioéteres en la orina			
DOSIS CRITICA	Aductos de proteína Aductos de ADN Productos de escisión del ADN			
EFECTOS BIOLOGICOS INICIALES	Mutaciones génicas Aberraciones cromosómicas (nº y estructura) Intercambio de cromátidas hermanas Micronúcleos Síntesis no programada del ADN			
EFECTOS BIOLOGICOS TARDIOS	Marcadores tumorales (citología exfoliativa)			
MANIFESTACIONES CLINICAS	Cáncer, defectos hereditarios, mal- formaciones, abortos espontáneos y otras alteraciones reproductivas			

Agrupación de los diversos métodos existentes para evaluar exposición a sustancias según su significado biológico

Indicadores de dosis interna

Todos ellos dan idea de la cantidad de sustancia absorbida, pero no permiten determinar los posibles efectos de la misma.

Determinación de la sustancia o sus metabolitos en especímenes biológicos

Objetivo

Estimar la cantidad de un mutágeno o cancerígeno concreto absorbido por el organismo.

Fundamento

Análisis químico de la sustancia en cuestión o de alguno de sus metabolitos en un fluido biológico, generalmente en orina.

Aplicabilidad

Exposiciones en las que se conoce el contaminante responsable de la supuesta exposición genotóxica.

Características del ensayo

Necesidad de conocer:

- El carácter mutágeno de la sustancia.
- Sus características cinéticas.
- Las relaciones entre exposición externa, dosis interna y efectos adversos.

Buena especificidad y fiabilidad.

Muy útil en los casos en que se puede aplicar un valor límite biológico.

No permite cuantificar riesgo para la salud.

Determinación de tioéteres en orina

Objetivo

Estimar la cantidad de sustancia con propiedades probablemente cancerígenas o mutágenas absorbida por el organismo.

Fundamento

Análisis químico de los tioéteres eliminados en la orina. La mayoría de compuestos carcinógenos y mutágenos presentan carácter electrofílico: su eliminación metabólica mediante conjugación con glutatión origina un aumento de la excreción de tioéteres que se ha revelado significativo para algunos grupos de exposición.

Aplicabilidad

Exposiciones a genotóxicos desconocidos, a exposiciones complejas o mal caracterizadas (p. ej. ciertas mezclas), y comparación entre exposiciones, pero únicamente a nivel grupal, ya que la variabilidad individual es considerable.

Características del ensayo

Inespecificidad respecto al compuesto responsable, con gran influencia del consumo de tabaco y la dieta.

Baja sensibilidad, que implica la necesaria utilización de grandes poblaciones debido a la gran variabilidad intra e interindividual.

Útil para la detección de grupos con especial riesgo de absorción de sustancias eliminables por conjugación con glutatión.

No permite evaluar el riesgo para la salud.

Determinación de actividad mutagénica en orina

Objetivo

Detectar la presencia de ciertas mutaciones puntuales provocadas en bacterias por sustancias presentes en la orina. Basándose en la universalidad de los ácidos nucleicos, es decir, en la uniformidad de su comportamiento a lo largo de toda la escala biológica, se asume que las sustancias mutagénicas para las bacterias pueden ser mutágenos en el ser humano y, como tales, potenciales cancerígenos.

Aplicabilidad

Exposiciones a genotóxicos desconocidos y a exposiciones complejas o mal caracterizadas, pero solamente a nivel grupal:

EXPOSICION	ESPECIMEN	RESULTADO	REFERENCIAS
CAUCHO	orina	(EC) +	Sorsa et al., 1981
		(ST) +	Falk et al., 1980
PRODUCTOS DE DESTILADO DE LA HULLA	orina	(ST) -	Recio et al., 1984
VOLATILES DE ALQUITRA-	orina	(ST) -	Maller y Dyving, 1980
NES Y BETUNES	orina	(ST) +	Heussner, et al., 1984
CITOSTATICOS* orina		(ST) - Barale et al., 1985	
CICLOFOSFAMINA	orina	(SC) +	Siebert y Simon, 1973
	orina	(FH) +	Guerrero et al., 1979
	liq. peritonal	(SC) -	Siebert, 1973

Ejemplos de aplicaciones de tests de mutagenicidad

- EC: Escherichia coli
- ST: Salmonella typhimurium
- SC: Saccharomyces cerevisiae
 - FH: Fibroblastos humanos
 - *) Ver NTP nº 163

Características del ensayo

Inespecificidad respecto al compuesto responsable.

Baja sensibilidad.

Útil para la detección de grupos con particular riesgo de absorción de genotóxicos.

No permite evaluar el riesgo para la salud.

Indicadores de dosis crítica

Indican la cantidad de genotóxico recibida efectivamente por el "órgano crítico", que en este caso son los ácidos nucleicos. Son, teóricamente, indicadores de riesgo para la salud, aunque no está bien establecida la correlación entre dosis crítica y riesgo de desarrollo de un proceso tumoral. Se correlacionan bien con la exposición causante de la absorción genotóxica.

Determinación de aductos de ácidos nucleicos

Objetivo:

Determinar la cantidad de sustancias genotóxicas que, después de absorbidas, han interaccionado con los ácidos nucleicos.

Fundamento:

Análisis del aducto formado por el contaminante absorbido y el DNA de un tejido accesible (linfocitos o eritrocitos) mediante técnicas cromatográficas, autorradiográficas o inmunológicas (estas últimas poco desarrolladas). Se asume que la dosis de contaminante unido al DNA de células sanguíneas es proporcional a la que se une al DNA de tejidos potencialmente diana.

Aplicabilidad:

Es limitada, debido a la sofisticación de las técnicas para aductos específicos; la autorradiografía con P32 es el método más utilizado.

Características del ensayo:

Apropiado para la evaluación de exposición y de dosis en el órgano crítico, pero se desconoce su significancia en la evaluación del riesgo sobre la salud.

Sensibilidad suficiente para exposiciones laborales y, muy probablemente, para exposiciones ambientales.

Buena especificidad; sin factores de confusión.

Posible evaluación individual.

Análisis costoso y completo.

Muestras estables; pueden ser almacenadas.

En la actualidad se utiliza solamente en estudios de investigación.

Determinación de aductos de proteínas

Presenta las mismas características que el método anterior. Las uniones contaminante-proteína (plasmáticas o hemoglobina) tienen una vida media más larga que las uniones DNA-contaminante, y por ello permitiría utilizar este método como indicador de exposición reciente y pasada.

Indicadores de efectos biológicos precoces

Indican cambios producidos como consecuencia de una exposición. Su significado suele estar más relacionado con una absorción de genotóxico, que con alteraciones de la salud. Se miden en células germinales y somáticas.

Observación de aberraciones cromosómicas

Objetivo

Determinar el efecto clastogénico (generador de roturas) producido por la exposición a sustancias genotóxicas.

Fundamento

Observación de lesiones, microscópicamente visibles, en los cromosomas de células accesibles, como son los linfocitos periféricos.

Aplicabilidad

Principalmente a exposiciones a radiaciones ionizantes. Para algunas exposiciones a sustancias químicas, tratándose de grupos. (ver Tabla 2)

CONTAMINANTE	TIPO DE ENSAYO	EXPOSICION	RESULT.	REFERENCIAS
ARSENICO	Aberrac, estruct.	Pesticidas	+	Petres et al., 1970
		Fundidares		Beckman et al., 1977 Nordenson et al., 1978 Beckman et al., 1979 Nordenson y Beckman, 198
CADMIO	Aberrac, estruct.	Indus. pigmentos	-	O'Riordan et al., 1978
		Fundid. Zinc	+ + + +	Deknudt et al., 1973 Deknudt y Léonard, 1975 Schmid et al., 1972 Bauchinger et al., 1976
спомо	Aberrac, estruct.	Fåbr. baterias	-	Bui et al., 1975
		Fábr. cromo	+	Bigaliev etal., 1977
		Soldad, acero inox.		Littorin et al., 1983 Husgafvel-Pursianen, 1982
	SCE	Fábr. cromo	350	Azhajev, 1984
		Soldad, acero inox.		Husgafvel-Pursianen, 1982 Littorin et al., 1983
MERCURIO (inorg.)	Aberrac, estruct.	Indus. mercurio	+	Popescu et al., 1979 Verschaeve et al, 1976
		Planta cloroálcali	-	Verschaeve et al., 1979 Mabille et al., 1984
NIQUEL	Aberrac, estruct.	Refinerías de níquel	+ + +	Boysen et al., 1980 Waksvik y Boysen, 1982 Waksvik et al., 1984
	SCE		0.0	Waksvik et al., 1984
PLOMO	Aberrac, estruct.	Fábr. óxido de plomo	+	Schwanitz et al., 1975 Sperling et al., 1970
		Desguace de barcos		O'Riordan y Evans, 1974
		Conductores bus	+	Högstedt el at., 1979
		Agentes de tráfico	-	Bauchinger et al., 1972 Schmid et al., 1972
		Fundid, cobre	+	Nordenson et al., 1978 Nordenson et al., 1982
		Fundid, plomo		Mäki-Paakkner, 1980 Schmid et al., 1972 Nordenson et al., 1982 Bauchinger et al., 1976
		Indus. del plomo	+ + + + + + + + + + + + + + + + + + + +	Deknudt et al., 1977 Calugar y Sandulesco, 1977 Forni, 1976, 1979, 1980 Forni, 1967 Hoffman et al., 1985
	SCE	Fundid, plomo	±	Mäki-Paakkmen, 1980

Ejemplos de aplicaciones de tests citogenéticos

Características del ensayo

Baja sensibilidad, ya que las tasas de aberraciones cromosómicas son bajas. Por ello se requieren niveles de exposición apreciables, o grupos expuestos y control muy amplios.

Cierta especificidad in vitro (por comprobar en grupos humanos).

Indicadores acumulativos de efecto, puesto que pueden revelar exposición ocurrida hasta veinte años antes.

Podrían indicar grupalmente un aumento de riesgo de cáncer, aunque no se conoce una relación causal entre aberraciones cromosómicas en linfocitos periféricos y cáncer en un órgano diana.

Intercambio de cromáticas hermanas (SCE)

Objetivo

Detección de alteraciones en el mecanismo de duplicación del material genético por efecto de la exposición a sustancias químicas.

Fundamento

Observaciones de la transposición de fragmentos de DNA entre las dos cromátides de un cromosoma, incubando, para ello, el tejido en una sustancia marcadora.

Aplicabilidad

Exposiciones recientes, especialmente a agentes alquilantes y a mezclas de productos, solamente a nivel grupal.

Características del ensayo

Técnica más sencilla que la de aberraciones cromosómicas.

La inestabilidad produce mucha variabilidad en los resultados.

In vitro es el método más sensible, puesto que se detectan alteraciones antes de que se produzcan lesiones morfológicas en el cromosoma.

In vivo sólo se ha revelado como buen indicador de exposición a agentes alquilantes y de exposiciones combinadas.

Ensayo de micronúcleos

Objetivo

Determinar el efecto clastogénico producido por la exposición a sustancias genotóxicas.

Fundamento

Observación microscópica de restos cromosómicos, producto de la fragmentación de los cromosomas, por la acción de sustancias externas, y su segregación anómala a las células hijas.

Aplicabilidad

Eritrocitos y linfocitos. En exposiciones relacionadas con un riesgo de cáncer oral podría practicarse en células de exfoliación bucal.

Características del ensayo

El grado de desarrollo es muy inferior al del resto de técnicas citogenéticas, no habiendo, paralelamente, demasiada información epidemiológica al respecto.

Constituye una alternativa más barata al método de aberraciones cromosómicas.

Determinación de la reparación de DNA

Objetivo

Estimar indirectamente las lesiones en el material genético, susceptibles de sufrir reparaciones por escisión.

Fundamento

Determinación de los fragmentos de DNA resintetizados después de haber actuado los enzimas implicados en la escisión de nucleótidos o bases lesionadas.

Aplicabilidad

Exposiciones muy recientes.

Características del ensayo

Conjunto de técnicas en fase de desarrollo y de eficacia no comprobada. En cualquier caso el método se limita a detectar alteraciones muy concretas y necesariamente recientes.

Determinación de mutaciones génicas

Objetivo

Detectar la existencia de mutaciones génicas en el DNA de células somáticas.

Fundamento

Escrutinio de un elevado número de células somáticas fácilmente accesibles para la detección de mutaciones debidas a sustancias genotóxicas.

Aplicabilidad

Exposiciones elevadas a genotóxicos.

Características del ensayo

Método en fase experimental.

Baja sensibilidad.

Ensayos sobre el esperma

Objetivo

Evaluar los efectos tóxicos en el sistema reproductor masculino.

Fundamento

Recuento de espermatozoides, estudio de motilidad y morfología.

Aplicabilidad

Poblaciones masculinas expuestas a sustancias genotóxicas.

Conclusiones

Los indicadores biológicos de exposición a sustancias genotóxicas pretenden evaluar la exposición y valorar los riesgos para la salud, y especialmente el de contraer cáncer. Ninguno de los métodos relacionados puede cumplir este objetivo a nivel individual. Sin embargo, puede resultar útil el uso combinado de algunos de ellos.

Para la exposición a uno o a unas pocas sustancias concretas y de características biológicas conocidas se recomienda:

- La determinación de la sustancia o sus metabolitos en sangre u orina para valorar la dosis absorbida.
- La realización de estudios de citogenética (aberraciones cromosómicas, intercambio de cromátides hermanas y/o micronúcleos) para valorar los efectos en células somáticas o germinales.
- El análisis de los aductos de proteínas o del DNA para evaluar la dosis crítica.

Para la exposición a sustancias genotóxicas desconocidas o a mezclas poco caracterizadas se recomienda:

- La determinación de la actividad mutágena en la orina para evaluar la exposición a sustancias genotóxicas.
- La realización de estudios de citogenética para evaluar efectos biológicos.
- La detección de aductos del DNA mediante marcaje con P32.

La utilización de estas combinaciones de ensayos en estudios de investigación debería contribuir decisivamente a determinar la eficacia de cada uno de los métodos en el campo de la prevención del cáncer laboral.

Bibliografía

AITIO, A. et alter

Indicators for assessing exposure and biological effects of genotoxic chemicals Luxembourg, CEC, 1988